태터데스크 관리자

도움말
닫기
적용하기   첫페이지 만들기

태터데스크 메시지

저장하였습니다.
  •MAC.i.Life | ⓩABOUT.me | RSS FEED
ZOOMinLIFE.com
Digital & Analogue LifeStyle Webzine
ⓋⒾⒺⓌ•ⒶⓁⓁ•ⒶⓇⓉⒾⒸⓁⒺⓈ
 

🄲•CATEGORY
ZOOM IN @LL (1495)N
🅘•INFORMATION•IMPROVEMENT (54)
🅝•NEWS•NOTICE (1257)N
🅢•STYLE•STORY (8)
🅘•IMAGINE•INSPIRE (8)
🅖•GOODNESS•GENUINE (6)
🅗•HEART•HEALING (17)
🅣•TREND•TECHNOLOGY (145)N

🅁•RECENT ARTICLE
AFA가 기업용 스토리지 매출 80% 점유…IDC, AF..
‘음성’ 의료 기록 ‘문자’로 변환…아마존,..
마캣앤마켓, 산업용 웨어러블 시장 전망 발표....
연간 329MW 규모 추가 전력생산...아마조..
[AI 스피커 NUGU] #32 | 운전하는 시간이 많을..
최초의 워크맨(Walkman)을 추억하며...소니, 워..
글로벌 스마트폰시장 삼성 21%로 1위…CP, ‘모..
컴퓨터 비전 리더로 구글, MS, AWS 선정…포레..
패션과 무용이 AI와 만나면?...구글, '런웨이..
코딩 학습을 더 쉽고 재미있게...애플, '에브리..
녹음된 아빠 목소리 구글 네스트가 재생..구글,..
[UiPath 세미나 #1] AI와 RPA의 만남은 필수.....
타이탄 보안 칩 기술 및 노하우 공유…구글, 파..
아이메시지 같은 안드로이드폰의 RCS 메시징…..
구글지도에 음성 번역기능 추가 예정…외국어 &..
교사 및 학부모가 제작한 콘텐츠 판매...아마존..
인텔, AI 전용 주문형 반도체 NNP와 VPU 공개....
[想] 분분한 낙화, 절절한 낙엽
마켓앤마켓, 2024년까지 문서 분석 시장 54.5%..
'단축키' 같은 '닷뉴(.new)' 도메인...12월 2일..

🄿•POPULAR ARTICLE
마침내 아이패드에서 마우스 사용을!..iPadOS 1..
AI가 만든 10만 개의 얼굴 사진...제너레이티드..
누구나 활용하는 웹기반 머신 러닝 툴…구글,..
모니터 1대에 PC 2대 연결해 화면보고 제어하고..
iOS & ipadOS 13.1에서 17,000개 글꼴 사용.....
초소형 초경량 8K 360 카메라…칸다오, 8K 30프..
성능・기능 향상된 10나노 CPU 시대 개막...인..
마침내 '리튬 이온 전지' 노벨 화학상 받다.....
[라이프 가이드] 'NUGU'는 누구인가? NUGU로 알..
4K '메인+보조' 듀얼 디스플레이 탑재 노트북....
차세대 DB와 첨단 메모리의 만남...오라클, X8M..
[알쓸전잡] 인텔 옵테인 DC 퍼시스턴트 메모리
최초의 워크맨(Walkman)을 추억하며...소니, 워..
[알쓸전잡] 구글, 프로젝트 자카드(Project Jac..
옷 소매에서 스마트폰 제어...구글, 리바이스와..
[UiPath 세미나 #1] AI와 RPA의 만남은 필수.....
6K 풀프레임 센서 탑재 캠코더...소니코리아,..
구글지도에 음성 번역기능 추가 예정…외국어 &..
코딩 학습을 더 쉽고 재미있게...애플, '에브리..
'단축키' 같은 '닷뉴(.new)' 도메인...12월 2일..





2019. 11. 13. 13:53

인텔이 AI 주문형 반도체엔 너바나(Nervana)와 비전 프로세싱 유닛(VPU)을 미국 샌프란시스코에서 개최된 ‘AI 서밋 2019’에서 시연하며, 클라우드와 엣지를 아우르는 인공지능 시스템 개발과 구현에 본격적인 속도를 내기 시작했다. 지난 8월 처음 공개된 인텔 너바나(Nervana) 신경망 프로세서(NNP;Neural Network Processor)는 NNP-T와 NNP-I가 있으며, 비전 프로세싱 유닛인 모비디우스 미리어드(Movidius Myriad)는 엣지 미디어, 컴퓨터 비전, 추론 응용 프로그램에 활용된다.

 

이번에 시연한 신경망 프로세서는 교육용인 NNP-T1000과 추론용인 NNP-I1000으로, 클라우드 및 데이터 센터 고객들이 복잡한 딥 러닝을 효율적으로 처리할 수 있도록 한 신경망 프로세서다. 인텔은 이들 제품을 기반으로 2019년에 35억 달러 이상의 매출을 올릴 것으로 예상되는 AI 솔루션 포트폴리오를 더욱 강화할 예정이다.

 

학습용 인텔 너바나 NNP-T, 메 자닌 카드. 인텔 NNPT는 클라우드 및 데이터 센터 고객을위한 규모와 효율성을 갖춘, 복잡한 딥 러닝을위한 인텔 최초의 특수 목적 ASIC이다. 인텔은 2019년 11월 12일(현지 시간) 샌프란시스코에서 열린 AI 회의에서 인텔 NNP를 시연했다.(사진:인텔)

 

너바나 NNP-T(Training)는 컴퓨팅, 통신, 메모리 간의 최적 균형을 유지해, 소규모 클러스터에서 최대 포드 슈퍼컴퓨터에 이르기까지 선형에 가까운 에너지 효율적인 확장성을 제공한다. 인텔 너바나 NNP-I(Inference)는 전력과 예산을 효율적으로 사용하고 유연한 폼팩터를 통해, 강력한 다중 모드 추론을 실제 구현하는데 이상적이다. 두 제품 모두 바이두 및 페이스북과 같은 최첨단 AI 고객의 AI 처리 요구에 맞게 개발되었다. 

 

인텔은 이러한 AI 포트폴리오를 활용해 대규모 클라우드에서 소규모 엣지 디바이스까지, 모든 규모에서  AI 모델을 개발하고 구현할 수 있도록 고객을 지원할 계획이다. 현재 생산되어 고객에게 제공 중인 새로운 인텔 너바나 NNP는 시스템 수준 AI 접근 방식의 일부로, 최대한의 활용을 위해 개방형 구성 요소 및 딥 러닝 프레임 워크 통합으로 개발된 완전한 소프트웨어 스택을 제공한다. 

 

패키지 칩 훈련을위한 인텔 너바나 NNP-T. 새로운 인텔 너바나 NNP는 시스템 수준 AI 접근 방식의 일부로, 최대한의 활용을 위해 개방형 구성 요소 및 딥 러닝 프레임 워크 통합으로 개발된 완전한 소프트웨어 스택을 제공한다.(사진:인텔)

 

2020년 상반기에 출시될 차세대 인텔 모비디우스 VPU(Vision Processing Unit)는 효율적인 아키텍처 기술을 통합해, 경쟁사 프로세서보다 최고 6배 우수한 전력 효율성과 이전 세대보다 10배 이상 높은 추론 성능을 제공할 것으로 예상한다고 인텔은 밝혔다. 또한 인텔 오픈 비노(OpenVINO) 툴킷 디스트리뷰선과 함께 엣지용 인텔 데브클라우드(DevCloud)를 발표해, 개발자들이 하드웨어를 구매하기 전에 광범위한 인텔 프로세서 기반에서  AI 솔루션을 시도하며, 테스트하고 프로토타입화할 수 있도록 지원할 계획이다.

 

 

아울러 인텔은 딥 러닝 추론 및 컨텍스트를 발전시키기 위해서는, 복잡한 데이터, 모델 및 기술이 필요하며 아키텍처에 대해 다르게 생각할 필요가 있다고 강조했다. 전 세계 대부분이 인텔 제온 스케일러블 프로세서에서 AI의 일부를 구동함에 따라, 인텔은 지속해서 VNNI(Vector Neural Network  Instruction)를 포함한 인텔 딥 러닝 부스트와 같은 기능들로 해당 플랫폼을 개선하고 있다. 

 

추론용 인텔 너바나 NNP-I(위)와 NNP-I m.2 카드(아래). 인텔 이번에 시연한 AI 포트폴리오를 활용해 대규모 클라우드에서 소규모 엣지 디바이스까지, 모든 규모에서  AI 모델을 개발하고 구현할 수 있도록 고객을 지원할 계획이다.(사진:인텔)

 

이는 개선된 AI 추론 성능을 데이터 센터와 엣지에 제공한다. 이 기술은 향후 몇 년간 강력한 AI 기반으로 사용될 것이지만, 고객은 가장 향상된 딥 러닝 트레이닝을 위해 3.5 개월마다 성능을 두 배 이상 높일 것을 요구한다. 이러한 혁신은 인텔의 AI 솔루션 포트폴리오상에서만 가능하다는 것이 인텔의 설명이다. 인텔은 컴퓨팅, 메모리, 스토리지, 상호 연결, 패키징 및 소프트웨어 전체에서 효율성rhk 프로그래밍 가능성을 최대화하고, 수천 개의 노드에 딥 러닝을 분산 시켜 지식 혁명을 확장할 수 있는 중요한 능력을 보장한다고 역설했다. 

 

나빈 라오(Naveen Rao) 인텔 부사장 겸 인공지능 제품 그룹 총괄은 “AI의 다음 단계에서 우리는 컴퓨팅 하드웨어 및 메모리의 한계에 도달하고 있다”며, “AI의 놀라운 발전을 지속하려면 인텔 너바나 NNP 및 모비디우스 미리어드 VPU와 같은 전용 하드웨어가 필요하다. 보다 앞선 시스템 수준의 AI를 사용하면 데이터를 정보로, 정보를 지식으로 변환하는 데 큰 도움이 될 것이다”라고 밝혔다.

 

미샤 스메랸스키(Misha Smelyanskiy) 페이스북 AI 시스템 공동 설계 부문 디렉터는 “인텔과 협력해 인텔 NNP-I를 기반으로 더욱더 빠르고 효율적인 추론 성능을 구현하고, NNP-I에 최첨단 딥 러닝 컴파일러 Glow를 위한 지원을 확장할 수 있어 매우 기대된다”라고 말했다.